Jonathan's Blog

Jonathan's Blog

Mindful Leadership and Technology


Now Reading: The Happiness Advantage

Posted on .

I'm currently re-reading The Happiness Advantage by Shawn Achor.

It's a great book for thinking about happiness first, not as an outcome that we get later on after we're successful or rich or whatever.

In fact, according to the book, you stand a better chance of reaching those goals if you focus on being happiness first.

Happiness is a precursor to success, not the other way around.

The author has identified 7 principles that he believes will help you to be more happy. Here is a quick summary:

  1. The Happiness Effect - As mentioned above, happiness drives success, and not the other way around. But why is that true? It's true because happy people have greater ability to think creatively and process options. This is an evolutionary adaptation - as stress narrows are ability to fight, flight, or freeze - happiness opens us to the great variety of options that are available. In addition to discussing the theoretical underpinnings, this chapter offers a number of ways to give yourself the happiness advantage. These are tips and tricks to help lift your mood and make you more open to possibilities and success, as well as providing an antidote to stress. There are also tips for leaders on how to infuse your workplace with happiness.
  2. The Fulcrum and the Lever - By changing how we view the world, we change how we react to it. By having a more positive outlook, we will react with greater positivity, freeing us from negative reactions. By doing this we can have a much greater impact on the world around us. At first blush, this feels like a restatement or explanation of number 1, but it is ultimately more than that. While tips and tricks to add happiness help, and being happier can help us be more successful, point 2 is deeper. This is about a positive mindset as a fundamental alteration of ourselves, creating even greater possibilities. The author says it best:

Simply put, by changing the fulcrum of our mindset and lengthing the lever of possibility, we change is what is possible. It's not the weight of the world that determines what we can accomplish. It is our fulcrum and our lever.

  1. The Tetris Effect - The more time that we spend engaged in an activity the more our brain becomes wired to perform that activity. Tax accountants spend their days searching for errors in tax forms. As a result they become wired to search for errors in everything they do. Conversely, the more time we spend engaged in scanning for the positive, we gain access to three very important tools: happiness, gratitude, and optimism. Happiness we've already discussed. Gratitude is a reproducer of happiness in the now: the more we see things to be grateful for, the more grateful we become, the more we see things to be grateful for, etc. Optimism does the same for the future: the more we focus on happiness, the more we expect that trend to continue in the future.
  2. Falling Up - When we fail or suffer setbacks, falling down or staying in place are not the only option. For many people, failures and setbacks (and even trauma) can produce changes that allow you to not simply stay where you are, but take even bigger steps forward. This is the idea of falling up. Become better because of the setbacks in your life. Use your failures and losses, as learning experiences. See where those silver linings can take you. The author provides several techniques for how to think about these situations and gather positive momentum from them.
  3. The Zorro Circle - limiting yourself to small, narrow goals helps you stay in control and expand your ability to stay focused and not given to negative thoughts and helplessness. You may be familiar with this (if you have ever read The Seven Habits of Highly Effective People by Steven Covey) as Circle of Influence and Circle of Concern. It was a great principle then, and it still works now. This book provides some interesting additional scientific information about how this works in our brains and bodies, and it provides insightful tactics to to build up our circles of influence (or control) to make us more resilient.
  4. The 20 Second Rule - by reducing small barriers to change, we make it easier to develop new, healthy habits. It can be difficult to make changes to improve our health or well-being. Willpower alone is quite fallible and gets worn down the more we are asked to use it. By the end of a long day it can be difficult to work up the necessary grit to go to the gym. We can make this easier on ourselves by simply removing the small obstacles that unnecessarily sap our self-control energy - remove bookmarks to distracting sites, keep your boots at the ready so you still go outside in the winter, put that book you're meaning to read on the coffee table where it is easy to get you, or hide the remote control so that it is hard to turn on the TV.
  5. Social Investment - Building and maintaining social connections has important ramifications for our ability to handle stress and face challenging situations. When we have strong social connections we are more resilient and less likely to think of situations as stressful in the first place. Even brief encounters can be benefiical - a short encounter can still be high quality, resetting our respiratory system and reducing levels of cortisol (a stress hormone) in our bodies. Rewards for positive social interactions are very much wired into our brains. So here is one more reason (if you needed one) to maintain your social connections and build up your work and personal networks.

The last part of the book focuses on the ways that using the 7 principles can help us to spread the benefits at work, at home, and everywhere else in the world.

In addition to the overview information I've shared, the book has lots of detail on how things work as well as how to put it into action.

I'm personally a lot more interested in putting things in action, and don't usually have to be sold on the fact that it works, but it is there if you need it.

The individual steps and processes are easily worth the price of the book. After all, if even one of these makes a difference for you - whether in your personal happiness or your career satisfaction - what was that worth?


Cloud Computing Cloud Price Comparison

How Much are you Charging me Right Now?

Posted on .

Whenever I go and sign up for any particular cloud provider, or add a new service, I always have a moment of panic that sounds like this in my head:

"How much will this cost? How much is this already costing me, RIGHT NOW at this VERY MINUTE?"

Because the answer, if you aren't careful, could be a lot of money.

So, I am improving my skills with all of the cost dashboards, and I have even provisioned an AWS Organization in such a way as to track the cost of my AWS DeepRacer contest participants (not as simple as I thought it would be).

But it is difficult to understand what is turned on at any given second and what is being charged for.

It would be nice to have a Panic Report that would show you everything that was operational and let you see what the per hour or per second charge for that thing was.

Perhaps this runs counter to the notion of "don't make it hard for the customer to give you money" or "encourage them to sign up for everything and don't show the cost until the bill arrives", but I have to believe that these companies are not that shortsighted.

Side note: I am signing up for IBM Cloud and Oracle Cloud, in the interest of seeing if I can pull in the same information to pricekite from those folks that I did for the Google Cloud, Microsoft Azure, and AWS.

So far, I think the answer is 'No', but we'll see.

With Oracle, I am unable to even sign in at this juncture. Their sign in process is very much 'not like the others' and seems hyper-focused on enterprise.

I guess that makes sense for them, but it is frustrating. I guess I won't accidentally be giving them any money.


Cloud Price Comparison Cloud Cloud Computing Multi-Cloud Pricing Beta

Posted on .

The new version of Pricekite is up, which I am labeling 'beta'. It allows for interactive comparison of serverless compute pricing across Google Cloud, Amazon Web Services, and Microsoft Azure. It is located here. And the code is also on Github.

I'm pretty happy with the current results. You can repeat the results of the earlier blog, exactly. Meaning that my math was right. Though the fact that they Azure SKUs count things in 10s instead of 1s through me for a loop momentarily.

Here is the core research tools that were used to do this, along with the cloud providers private APIs:

The Google SKU explorer is very helpful, I wish all the providers would add such a feature.

You can also complete the extended analysis I mentioned in my blog notes. In order to run those scenarios you increase the number of functions, transactions, or any other parameter and see how the effect of discounts dissipates, with larger volumes.

My original scenario was:

2 Functions
12,960,000 Executions/Month
512 MB Function Memory
200 ms/execution

In this scenario (which is substantive) AWS is the clear winner, because of their discounts. However, when you increase the functions to 32, Azure becomes the less expensive option because of their lower (by a little bit) base pricing.


Cloud Price Comparison Cloud Cloud Computing

Cloud Pricing Thoughts

Posted on .

For my last post comparing serverless offerings on a number of angles, I was struck again by the complexity of cloud pricing, which I alluded to at the end of the article.

Of course there is the great convenience of the cloud and all that it does for us, but there is also the substantial complexity of all that is offered, and the way it is priced.

This is a good article to read if you are thinking about this stuff:

My biggest beef is that I have to do actual research to understand the skus and how they work, in order to do price comparison. The APIs themselves do not (in any way shape or form) describe the service offering.

So: I Google, I read, and I figure it out. At least Google now offers this:

Which is a very helpful research tool, for their own cloud offering.

The other providers should do something like it. And they should give you programmatic access.

These systems all lack some definitive way to identify the pertinent skus. As a result, I'm hardcoding things (for now) and thinking about how this could be done better in the future.

Even if the values are stored in a database or configuration, I will need to add new ones, stay up to date, etc.

For real dynamic pricing, it would be better if there was an API that could be called to retrive relevant skus for any given service. Something like this, "Dear AWS, please give me all skus relevant to pricing of Lambda functions in East US 1". This would SHOULD be a simple API to use, and they have all the information to build it but they don't think about things that way.

The Google tool sort of does this, but you get back much more information and you still have to sort through skus to figure it out.

Anyway, billing APIs are not sexy nor are they money makers for these guys, but meaningful automation that will matter to the CFO will depend on services like this.

If I have to maintain a list of skus, then my pricing engine will always be a bit brittle. Fine for research, not great for prod.


Cloud Cloud Computing Cloud Price Comparison

Serverless Functions - A Cross-Cloud Evaluation

Posted on .

As part of my Pricekite(also on GitHub) development work, I have been digging deep into the pricing model and use of serverless functions, this post will summarize statically, what you can find dynamically on Pricekite - from a compute cost perspective.

We will also look at development approaches and options for the serverless functions options from the three big players:

  • AWS Lambda
  • Google Cloud Functions
  • Azure Functions


Winner: AWS

AWS and Azure

AWS and Azure price in more or less exactly the same way. They price based on what is called a Gigabyte-second. This unit of measure expresses the cost of a function using a gigabyte of memory for 1 second.

If you do not have a full gigabyte provisioned, then the amount charged for an actual clock second is a fraction of that amount. Or if you have more than a gigabyte, it is a multiple of the rate.

Both Amazon and Azure also charge for invocations. For the examples below I am assuming that the functions have allocated 512 MB of memory, which means that any function will be charged for a half GB-second for every clock second it runs.


Google prices based on a memory allocation for time and for processor time, instead of rolling those into a single measure. This provides for more granularity in their pricing and probably lower pricing for workloads using less memory.

Since the CPU size you get is tied to the amount of memory, and we are using 512 MB for the memory, the CPU we are using has a clock speed of 800 MHz.

Pricing Scenarios

In order to try and make this somewhat sane we are using the following assumptions:

  1. Function has a run time of 200 ms, regardless of platform.
  2. Function is assigned 512 MB of memory.
  3. On Google Cloud this implies an associated clock speed of 800 MHz.
  4. The month we are discussing has 30 days, and therefore 2,592,000 seconds.
  5. Each function (running 200 ms) will be invoked 12,960,000 times in the 30 day period.

We will look at the following 2 scenarios and compare prices:

  1. A system that consists of 2 functions that run non-stop over a monthly period.
  2. Price for 1 function running non-stop for a month, minus all discounts.

The first scenario is meant to show a reasonable amount of use that is still impacted by the discounts.

I understand that the exact scenario is unlikely, but it represents a pretty significant amount of invocations and CPU time. This same number of invocations and CPU time could be spread out over 5 or 10 or 100 functions, and the computations would be the same (assuming each function ran at 200 ms per invocation).

The second scenario is important because as you scale up the discounts will come to mean less and less, this scenario gives the sense of a per unit price, that actually represents real work.

Scenario 1: 2 Functions

Because we are running 2 functions at 512 MB memory, the GB Seconds is equal to:

2 * ( .5 * 2,592,000) = 2,592,000 GB Seconds/Month/Function

AWS US East 1


2,000,000 GB - Seconds/Month
1,000,000 Invocations/Month

AWS Item Rate Per Unit Unit Units Consumed Units Charged Cost
CPU/Memory $0.0000166667 GB Seconds 2,592,000 592,000 $9.87
Invocations $0.0000002 Invocation 25,920,000 24,920,000 $4.98
Total -- -- -- -- $14.85

Azure East US


400,000 GB Seconds/Month
1,000,000 Invocations/Month

Azure Item Rate Per Unit Unit Units Consumed Units Charged Cost
CPU/Memory $0.000016 GB Seconds 2,592,000 2,192,000 $35.07
Invocations $0.0000002 Invocation 25,920,000 24,920,000 $4.98
Total -- -- -- -- $40.05

Google us-east-1

Because our CPU is allocated at 800 GHz. Our GHz/Seconds are:

2,592,000 * (800/1000) = 2,073,600 GHz Seconds/ Month / Function


200,000 GHz Seconds/Month
400,000 GB Seconds/Month
2,000,000 Invocations/Month

GCP Item Rate Per Unit Unit Units Consumed Units Charged Cost
CPU $0.00001 GHz Seconds 4,147,200 3,947,200 $39.47
Memory $0.0000025 GB Seconds 2,592,000 2,192,000 $5.48
Invocations $0.0000004 Invocations 25,920,000 23,920,000 $9.57
Total -- -- -- -- $54.52

Take aways from scenario 1:

  1. AWS' discounts still matter a lot at this point. The 2 million GB Seconds add up to a lot.
  2. Google's higher per invocation charge hurts them. It costs you more, the quicker your functions run. Said differently: if you have long running functions (200 ms is not long running) you will spend less on those pricey invocation charges.
  3. Google is, overall, more expensive. They charge for more types of things and they charge more for those things.

Scenario 2: 1 Function, No Discounts

This is not a real world scenario (since discounts would apply), but the more functions you run, the smaller % of the total the discount is going to be.

So, if we consider a single function at 512 MB running for a full month (2,592,000 seconds) as our unit. What is our per unit cost, as we scale up?


AWS Item Rate Per Unit Unit Units Consumed Units Charged Cost
CPU/Memory $0.0000166667 GB Seconds 1,296,000 1,296,000 $21.60
Invocations $0.0000002 Invocation 12,960,000 12,960,000 $2.59
Total -- -- -- -- $24.19


Azure Item Rate Per Unit Unit Units Consumed Units Charged Cost
CPU/Memory $0.000016 GB Seconds 1,296,000 1,296,000 $20.74
Invocations $0.0000002 Invocation 12,960,000 12,960,000 $2.59
Total -- -- -- -- $23.33

Google Cloud

GCP Item Rate Per Unit Unit Units Consumed Units Charged Cost
CPU $0.00001 GHz Seconds 2,073,600 2,073,600 $20.74
Memory $0.0000025 GB Seconds 1,296,000 1,296,000 $3.24
Invocations $0.0000004 Invocations 12,960,000 12.960,000 $5.18
Total -- -- -- -- $29.16

Take aways from Scenario 2:

  1. Azure's per unit price is lower, but not by much. Once you have 32 such functions (of traffic equivalent to that) and your bill is over $730, Azure's lower per unit makes up for Amazon's initial discounts. So, if you have that kind of traffic, Azure is more cost effective.
  2. Google's per unit price is higher. Long-running functions would cost less, but probably not by enough to make a difference. They're still the more expensive option.

It is also interesting to note that Azure's published rate on their website of .000016, is less than what comes back from their pricing API for any region. So, if you look at, the numbers are different.

I am assuming for the purposes of this analysis that their published numbers are correct.

Local Development

Winner: Microsoft

But of course, compute cost alone is not everything. For many implementations, labor costs and support costs will also factor in as a significant cost of the solution. So, next we will look at the tools that go in to working on these serverless functions.

By local development, I mean what does it take to work on these serverless functions, if you are going to work on your local machine? This is in contrast to working in the web-based editor that each company provides. I will cover the web-based editors below.


Developing locally with Microsoft means using Visual Studio. There may be other ways to do it, but if you are already a .Net developer then you have Visual Studio. If you do, then creating functions, running, and debugging them is very simple and easy to do. It even lets you emulate azure storage locally OR connect to your azure subscription and use real Azure resources. This is amazingly simple and comes with all that you need to do local development.

It is even easy to set breakpoints in the code (just as you'd expect from any other C# development in Visual Studio). There are code templates (in VS 2019) you just select, walk through the wizard, and you are up and coding.

Also, Microsoft is clearly the cloud of choice if you are already a .Net shop and like writing C# code.

A few screen shots:


Google does not have a tool anything like Visual Studio. So if you are going to work on Google Cloud Function code locally, you will be using your favorite editor: Web Storm, Atom, etc.

The nice thing about working locally is that Google Makes this very easy through some local tools that you can install on your computer via NPM, and which can be started off with a couple simple command lines using their Functions Framework.

If you read this article:

The whole thing should take about 5 minutes.

All in all it is very easy and works out of the box if you are used to node.js and NPM, which you should be if you are going to write Google Cloud Functions.


The truth is, I did not get it to work.

In order to do local development you need several things installed which I did not have AWS-CLI and Docker, being the two I can remember off the top of my head. I did get them both installed (eventually) and running.

I was able to run the template creation of a basic "Hello World" but when I ran it, it failed. I believe the problem was with Docker. The only online help I found with my problem was to ensure that I was running Linux and not Windows Docker containers, but I was already doing that.

I believe that it does work. And if you are more deeply enmeshed in the AWS world, you can probably get this working, without any problem. I didn't. Compared to the other two it was hard.

For the record, I had to install VS 2019 on a machine which had never had any previous version of VS on it. It took a while, as VS installs do, but everything worked exactly right, out of the box, the first time.

I spent probably 1 - 2 hours messing with local Amazon development before I gave up.

Cloud-Based Development

Winner: Amazon Lambda

Now we will talk about doing development in the web interface. This is where Amazon really shines. They bought a company called Cloud9 (web-based IDE) a few years ago and it shows.

You can still use Cloud9 as a separate, web-based development product for other development, some features and UI concepts have been brought in to the Lambda funciton editor.


There is a lot to like about doing Lambda function development inside of the AWS Console. My maybe-favorite thing, is not really a development thing at all. It is this:

This Designer thingy shows you all of the Lambda function's permissions in a neat user interface. I don't know if Amazon thought of this or it came from Cloud9, but it is genius and very helpful and every system in the world should copy it. Azure especially needs this.

The development piece is straightforward, has good syntax highlighting and catches pretty much all your syntax errors for you.

There is built in testing, log tracing, performance configuration, permissions, performance monitoring, and network info. And it is all on one page, intuitively laid out, helpful, and easy to use. This is where AWS maturity comes into full view.

There are times in life where you have to sit back and appreciate what I call a million dollar page or screen This right here is a million dollar web page, and it is a million dollars well invested.

The main drawback is that you cannot simply add node.js packages to the web-based editor, you can only do that locally. But I honestly found that the included packages work for all my use cases. The built-in packages include the AWS JavaScript SDK (I evaluated node.js, not python), which has A LOT of functionality.


Microsoft probably gets second place, as there are some things that they do really well. You can easily add additional dlls for references to have your code do more. The code editor (for C#) is on par with AWS in terms of syntax checking and highlighting. And the built in log-tracing was even better (when it worked).

Only sometimes it didn't work. Sometimes it just stopped working for reasons that I never completely understood, causing me to have to reload the page (annoying).


Google has the least exciting looking interface. And it is not nearly as full featured as either MS or AWS. There is no onscreen logging, and the process of changing code required a redeploy (10 - 15 seconds) to test it. You also have to pop in and out of editing mode, which takes time also. The best thing about Google is that they make it very comfortable for node.js developers to work there. You can edit the file with the js code (usually index.js) and you can edit the package.json file to add includes, all very easy if you are familiar with that ecosystem.

Google makes it very easy to deploy from their Cloud Source Repositories, which includes an easy integration to Git. So it is easy to deploy from an external source repository. It is all built into the UI and very clean. Honestly, I don't know if security people would love that, but it is a handy feature.

Who Should You Pick?

Well, the answer is, "It depends."

AWS has the edge in both price and online code editing, which I think makes them the strongest player.

If you are a .Net shop or have other reasons to work locally, Visual Studio's local development capabilities are very strong.

There are a lot of other real world scenarios to consider and you should consider these things as well when you are evaluating these tools:

  • What else does your application do?
  • What type of other services do you need?
  • What deployment model do you want?
  • What are your QA Automation goals?
  • Are you a start up?
  • What size of payload are you sending in to your functions?

All of those things are important, as is this question: "What are you already using?" If you have significant investment, you have to look at the cost of change, as well.

I think that you can look at this and be upset about just how complex some of these things are. But honestly, I think that from a capability stand point it is just amazing what the cloud has to offer and how powerful this stuff is. Also, if you think there isn't job security in understanding and making sense of these tools for your organization, I think you're missing the big picture.


Software Software Development I hate the phrase 'spaghetti code'.

This Code is Fragile on Purpose

Posted on .

This post is a follow up to my earlier posts on so called fragile or spaghetti code where I made a point about reading code - not the most fun part of anyone's day, but it generally makes code a lot less 'fragile' if you do it.

This idea is the equivalent of taking the time to read the instructions - you're a lot less likely to break something if you know how you're supposed to operate it.

This post is still about code fragility, but it is about code that actually is fragile, only it is fragile on purpose.

There are a number of reasons why this can happen, I will illustrate them from some recent work I've been doing, as well as some client projects. But first I am going to focus on what people mean by 'fragile', so it is clear what this means.

You may hear the phrase 'this code is fragile' and think that that means that it doesn't work, or that there are purposes to which it is not suited. As in, 'This vase is fragile so I probably shouldn't fill it with chunks of broken concrete.

But this is really not what 'fragile' code means. Usually it means:

  1. This code is hard to work on and it is likely to break if I do something to change it.
  2. This code may break in the future if the conditions in which it runs change.
  3. This code may break if any of our integration partners alter their API.
  4. This code does not fail gracefully.
  5. This code is not commented well and that makes it hard for me to read and understand what it doing.

As it pertains to number 1, this is just the scenario from the other article where you aren't working hard enough to understand it. Said differently, you are really saying, "My understanding of this code is fragile."

I put 1 and 5 at opposite ends of this list for a reason. Because 5 should not be an obstacle to reading code. It is a better excuse, than 1 for your lack of progress, but it still an excuse. Poorly commented code simply means you have to spend more time reading, testing, debugging the code to understand it. No code is ever commented well enough in my opinion, so you can't let it stop you from working on it. Code can be readable or unreadable, it can be commented or not, but that should not stop you from understanding it if you know what you are doing and that is your job. You can get a different job, but chances are you will be in the same situation there.

5 is only worth noting separately, because you should plan for and avoid that situation. Try to avoid committing this sin if you can.

For both 2 and 3, a significant portion of what will happen in the future is unknowable, and so how much time you spend dealing with 2 and 3 should be carefully callibrated. You can know that a partner is going to publish an API update in 6 months if they tell you, but if you need to go live now you may simply have to deal with that change when they publish it or make it the new API available for testing.

Of course with failures and crashes (number 4) you should avoid these things and use defensive coding practices to avoid exposing your users to failures, even if they originate outside of your systems. A few examples:

  • A good NoScript section of your website.
  • A graceful handling handling of offline operation.
  • Handling nulls, empty strings, and other straightforward data situations.
  • Use exception handling properly to deal with unexpected situations

Etc, etc.

But be careful of swallowing problems within the system - you may protect users and also hide them from yourself, only to have them come back and bite you later on.

It's always surprising to me how many people present an utterly, blank empty page to the user if JavaScript is not enabled or working.

OK, so here we are. We need to do some development work. We have coding practices to deal with number 4 and 5. We're working on a new system, so hopefully number 1 is a non-issue. What, if anything should we do about 2 and 3?

My answer is: it depends.

Truthfully, you can't predict the future or what your integration partner will do to update their API until they publish a specification.

We were recently working through updating a Dialogflow implementation for v2, but we couldn't have changed anything or done anything until they published their v2 specs. It would have been guesswork.

As I've been working on my side project, I am dealing with the billing APIs for AWS, Azure, and Google Cloud, each of which is in varying stages of development. I am faced with 2 challenges:

  1. What are they going to do in the future to update these APIs?
  2. What additional features am I going to want to add in the future?

My decision for both is to do nothing. If/when I decide to add a feature that requires me to improve code, I'll improve it. I had to add some data storage in order to have data on hand for 1 provider (cough Azure cough) because their billing API is not the most efficient thing in the world.

I had not intended to add data storage until phase 2, but my hand was forced by the 6 seconds it took to pull and process the data. So, I call the 6 second method every 30 minutes and store the values, which can then be pulled at any time. It introduces latency to the data, but that does not matter at this juncture at all. If it turns out to matter, I simply can crank up the frequency of the polling.

So, the code is fragile. But it works, and it was able to be written by 1 person quickly, and it will be very easy to read as, for the most part, you have absolute line of sight readability in the code.